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aimed at wave propagation phenomena in computational
aeroacoustic and computational electromagetics, com-Two families of explicit and implicit compact high-resolution

shock-capturing methods for the multidimensional compressible pressible shear-layer flow and direct numerical simulation
Euler equations for fluid dynamics are constructed. Some of these of turbulence. The reader is referred to [1–4] for more
schemes can be fourth- and sixth-order accurate away from disconti- details. The papers by Lele and Davis discuss wave resolu-nuities. For the semi-discrete case their shock-capturing properties

tion and phase errors for linear wave propagation. Al-are of the total variation diminishing (TVD), total variation bounded
though formal extension of their schemes to nonlinear(TVB), total variation diminishing in the mean (TVDM), essentially

nonoscillatory (ENO), or positive type of scheme for 1D scalar hyper- systems is a straightforward, systematic extension of their
bolic conservation laws and are positive schemes in more than one idea to minimize phase errors and enhance wave resolution
dimension. These higher-order compact schemes require the same

for coupled nonlinear systems of equations remains to begrid stencil per spatial direction as their second-order noncompact
seen. Unlike the standard compact schemes that use sym-cousins. The added terms over the second-order noncompact cous-

ins involve extra vector additions but no added flux evaluations. metric compact operators, most of the recent development
Due to the construction, these schemes can be viewed as approxi- in compact methods uses asymmetric compact operators.
mations to genuinely multidimensional schemes in the sense that They also require additional numerical dissipation for high
they might produce less distortion in spherical type shocks and are

gradient flows and generate spurious oscillations acrossmore accurate in vortex type flows than schemes based purely on
shock waves and contact discontinuities even with added1D extensions. The extension of these families of compact schemes

to coupled nonlinear systems can be accomplished using the Roe linear numerical dissipation. At present, there is no system-
approximate Riemann solver, the generalized Steger and Warming atic extension of these asymmetric compact schemes to have
flux-vector splitting, or the van Leer type flux-vector splitting. Modi- high-resolution shock-capturing capability. Hybrid
fication to existing high-resolution second- or third-order non-

schemes using these types of compact methods in conjunc-compact shock-capturing computer codes is minimal. High-resolu-
tion with completely different construction of high-resolu-tion shock-capturing properties can also be achieved via a variant

of the second-order Lax–Friedrichs numerical flux without the use tion shock-capturing methods to enhance shock resolution
of Riemann solvers for coupled nonlinear systems with comparable were also proposed (see, e.g., [5]). A shortcoming of this
operations count to their classical shock-capturing counterparts. An

type of hybridization is that the numerical solution mightefficient and compatible high-resolution shock-capturing filter for
experience a nonsmooth transition at the switch to a differ-spatially fourth- and sixth-order classical compact and noncompact

schemes is discussed. The simplest extension to viscous flows can ent type of scheme, in addition to being sensitive to the
be achieved by using the standard fourth-order compact or non- choice of the numerical flux or slope limiter. For 2D and 3D
compact formula for the viscous terms. Q 1997 Academic Press complex shock wave and contact surface interactions, the

switch mechanism can become less trivial.
The motivation of the present work is to constructI. INTRODUCTION

schemes that retain some of the unique properties of com-
pact schemes and have good shock resolution without re-Spatially high-order compact schemes have attracted
sorting to the above type of hybridization. The base schemesmuch attention in recent years due to their narrow grid
used are compact schemes with symmetric compact opera-stencil and a possible enhanced accuracy over their non-
tors for easeof extensionto high-resolutionshock-capturingcompact cousins. The majority of these developments are
schemes. It is anticipated that the proposed schemes will
have a larger scope of applications than the aforementioned

1 A condensed version appeared in the Proceedings of the 6th Interna-
schemes. Independently, Steve Davis of Mississippi Statetional Symposium on Computational Fluid Dynamics, Sept. 4–8, 1995,
proposed a similar idea [6] but with different constructionLake Tahoe, Nevada. A Major portion of this paper was published as

NASA TM-110364, August 1995. than the present work . Here we define a compact scheme in
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a broader sense than the traditional definition. For a desired scalar hyperbolic conservation laws and are positive
schemes in more than one dimension. See Yee [13] and ref-order of accuracy, a scheme is defined as compact if its grid

stencil is at least one grid point less than standard non- erences cited therein for background on noncompact high-
resolution shock-capturing schemes. These proposedcompact schemes (in each spatial direction).

This work was prompted by the unsatisfactory resolution schemes require a smaller grid stencil than their non-
compact cousins. Both families of fourth- and sixth-orderof second-order total variation diminishing (TVD)

schemes used for simulating mixing layer flows with coarse schemes require a grid stencil width of five points for TVD
and positive types of schemes and seven points for ENOand nonadaptive grids (see, e.g., [7], and by the idea of [8,

9]). Abarbanel and Kumar proposed a spatially fourth- types of schemes in each spatial direction. On the other
hand, typical grid stencils for noncompact second- andorder compact scheme without the associated tridiagonal

matrix inversion of standard compact schemes. It is compu- fourth-order high-resolution shock-capturing schemes are
5–7 and 9–11 points, respectively, in each spatial direction.tationally more attractive than standard compact scheme

constructions. Just like schemes proposed in [2–4], their The family of schemes based on Abarbanel and Kumar does
notrequire thestandardmatrix inversion[14,15] andspecialcompact scheme exhibits poor shock resolution even

with added linear numerical dissipation. Another idea by numerical boundary treatment [1, 16] associated with typi-
cal compact schemes. The added terms over the second-Cockburn and Shu that the author follows is the definition

of a local mean. It is used as a reference for introducing order noncompact cousins involves extra vector additions
but no added flux evaluations. Due to the construction, bothlocal limiting to avoid spurious oscillation while keeping

the formal accuracy of a class of compact schemes. How- families of schemes can be viewed as approximations to gen-
uinely multidimensional schemes in the sense that theyever, this so-called total variation diminishing in the mean

(TVDM) idea does not completely suppress spurious oscil- might produce less distortion in spherical type shocks and
are more accurate in vortex type flows than schemes basedlations due to the limiting of the local mean step even for

scalar hyperbolic conservation laws. purely on 1D extensions. The degree of distortion and reso-
lution in spherical type shocks depends also on the choiceThe objective of this work is fourfold. The first objective

is to modify the Abarbanel–Kumar compact scheme to be of flux limiters and the numerical flux construction.
For more than one dimension, the added work over thehigh-resoution at discontinuities and extend this idea to

include a larger class of high-resolution shock-capturing noncompact second or third-order counterparts only in-
volves extra vector additions in each spatial direction. Noschemes. A more efficient variant of the form best suited

for multidimensional steady-state computations will be dis- additional Riemann solver or additional flux limiter compu-
tations over the second- or third-order noncompact coun-cussed. The second objective is to extend the Cockburn–

Shu fourth-order TVDM scheme to include a larger class terparts are involved. Most of the proposed explicit TVDM
compact forms require a 5 3 5 tridiagonal matrix inversionof explicit and implicit high-resolution schemes. A modifi-

cation of their idea and the use of different numerical over their noncompact counterparts in 2D. The effort to
modify existing high-resolution noncompact shock-captur-fluxes are proposed to minimize the spurious oscillations

due to the TVDM operator. The third objective is to ana- ing computer codes to have the compact form for both fami-
lies is minimal. The present modification to Cockburn andlyze the relative advantages and disadvantages and the

usage of these two families of schemes. The fourth objec- Shu’s TVDM form produces better shock resolution than
their Lax–Friedrichs splitting variant. One advantage of thetive is to combine the compact stencil with a variant of

second-order Lax–Friedrichs numerical flux to increase TVDM version is that a spatially and temporally fourth-
order compact form for both time-accurate and time-efficiency (minimize operation counts) for combustion,

thermal, and chemical nonequilibrium flow applications. marching approaches can be readily obtained as opposed to
the inability to extend the Abarbanel and Kumar modifica-This particular form can have the option of not requiring

Riemann solvers for coupled nonlinear systems of equa- tion in a similar manner for time-accurate computations.
The majority of the proposed implicit schemes are espe-tions. While slightly more diffusive than other numerical

fluxes that require Riemann solvers, the cost saving is very cially suited for time-marching approaches to steady-state
numerical solutions, since higher-order spatial accuracynoticeable. One remedy to compensate for the slight degra-

dation in resolution is to use a less diffusive flux limiter, can be achieved with minimal effort and the steady states
are independent of the time step. If the delta formulationthe artificial compression method [10], and/or grid cluster-

ing and grid adaptation at high gradient and shock regions. [17, 18] is used, the minor modification to existing second-
order noncompact high-resolution shock-capturingSome of these proposed schemes can be fourth- or sixth-

order accurate away from discontinuities. For the semidis- schemes involves only the explicit operator. The proper
choice of time discretizations for the proposed two familiescrete case their shock-capturing properties are of the TVD,

total variation bounded (TVB), TVDM, essentially nonos- of schemes for wave propagation and computational aero-
acoustic type of applications has not been addressed. Thus,cillatory (ENO), or positive type [11,12] for nonlinear 1D
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the time discretizations discussed in this paper might not depending on the problem. The dependent variable U is the
vector of conservative variables, and (r, u, v, w, p)T is thebe optimized for the particular types of flows in the sense

of wave resolution and phase error discussed in [19, 2–4] vector of primitive variables. Here r is the density, u, v, and
w are the velocity components, ru, rv, and rw are the x-, y-and the Workshop on Aeroacoustics [20]. This topic is a

subject of ongoing research. and z-components of the momentum per unit volume, p is
the pressure, e 5 r[« 1 (u2 1 v2 1 w2)/2] is the total energyThis is the first of a two part series of papers under the

same topic. This part is devoted to the formulation and per unit volume, and « is the specific internal energy.
For a thermally perfect gas, the equation of state isthe second part is devoted to numerical results for fluid

dynamics applications. Section II reviews the Abarbanel–
p 5 rRT, (2.2)Kumar scheme and the author’s modification of their

scheme. Section III describes the extension of their scheme
where R is the specific gas constant and T is the tempera-to high resolution at shocks and contact discontinuities. It
ture with « 5 «(T). For constant specific heats (caloricallyincludes the formulation with forcing or nonlinear source
perfect gas)terms. It also includes the construction of a spatially sixth-

order schemes without increasing the grid stencil width
« 5 cvT, (2.3)

over the fourth-order form. Extension of these schemes
to viscous flows is also discussed. Section IV extends the where cv is the specific heat at constant volume.
Cockburn–Shu compact scheme to a larger family of The above flow equations are restricted to non-chemi-
schemes and extends the scalar schemes to the multidimen- cally reacting gases. If reacting gases were to be included,
sional Euler equations using the various Riemann solvers. the species continuity equations involving mass transport
An efficient yet compatible high-resolution shock-captur- of chemical species i due to a concentration gradient in the
ing filter for these compact schemes is also discussed. A species should be added. Thus, the scalar density function r
major portion of the material was published, not including becomes a vector of species mass density and the corre-
the sixth-order formulations, as an internal NASA TM- sponding F, G, H, and S are also more complicated leading
110364, August 1995 [21]. to the increase of the vector length of U, F, G, H, and S. See

Anderson [22] and Park [23] for more detail. Although the
II. COMPACT SCHEMES FOR THE 3-D discussion is restricted to nonreacting flows, the form of the

EULER EQUATIONS schemes remains the same for reacting flows. Efficient im-
plementation of these schemes similar to the noncompact

In vector notation, the 3D compressible time-dependent TVD type of schemes to reacting flows can follow the same
Euler equations in conservation form for an equilibrium procedure as in Yee and Shinn [24] and Yee [13]. Difficulty
real gas can be written as in avoiding the wrong speed of propagation with discontinu-

ous data associated with the stiff source term remains to be
Ut 1 Fx 1 Gy 1 Hz 5 S, (2.1a) addressed. See [25–32] for discussion of this subject. Note

that for equilibrium real gas and nonequilibrium flows, thewhere Ut 5 ­U/­t, Fx 5 ­F/­x, Gy 5 ­G/­y, and Hz 5
form of the Riemann solvers and flux–vector splittings are

­H/­z with the U, F, G, and H vectors given by
different from the perfect gas counterparts. See [13] and ref-
erences cited therein for these formulae.

2.1. Background

As discussed in the introduction, there exists many com-U 53
r

ru

rv

rw

e

4; F 53
ru

ru2 1 p

ruv

ruw

eu 1 pu

4;

(2.1b)

pact schemes in the literature. Here a compact scheme
that does not require the matrix inversion associated with
the standard compact scheme is addressed. The fourth-
order in space and second-order in time Abarbanel–
Kumar compact scheme for (2.1) with S 5 0 takes the form

Un11
j,k,l 1 u[lx D xFn11 1 ly D yGn11 1 lz D zHn11]

G 53
rv

ruv

rv2 1 p

rvw

ev 1 pv

4; H 53
rw

ruw

rvw

rw2 1 p

ew 1 pw

4.
1 D 0xyzUn11

j,k,l 5 Un
j,k,l

2 (1 2 u)[lx D xFn 1 ly D yGn 1 lz D zHn] (2.4a)

1 [D 0xyzUn
j,k,l 2 lx D 0yzDxFn

2 ly D 0xzDyGn 2 lz D 0xyDzHn],The vector S 5 S(x, y, z, t) can be the forcing or source term
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where lx 5 Dt/Dx, ly 5 Dt/Dy, lz 5 Dt/Dz, and
Ut 1

Dt
2

Utt 1 ? ? ? 5 2 FFx 1
Dx2

3!
Fxxx 1 ? ? ?G

D xF 5 As[Fj11,k,l 2 Fj21,k,l], (2.4b)

2 FGy 1
Dy2

3!
Gyyy 1 ? ? ?G (2.6)D yG 5 As[Gj,k11,l 2 Gj,k21,l], (2.4c)

D zH 5 As[Hj,k,l11 2 Hj,k,l21], (2.4d)
2 FHz 1

Dz2

3!
Hzzz 1 ? ? ?G,

D 0xyz 5 Ah[D 0x 1 D 0y 1 D 0z], (2.4e)

D 0yz 5 Ah[D 0y 1 D 0z], (2.4f)
or

D 0xz 5 Ah[D 0x 1 D 0z], (2.4g)

D 0xy 5 Ah[D 0x 1 D 0y], (2.4h) Ut 1 Fx 1 Gy 1 Hz 5 2 FDt
2

Utt 1
Dx2

3!
Fxxx

(2.7)D 0x(Uj,k,l) 5 Uj11,k,l 2 2Uj,k,l 1 Uj21,k,l , (2.4i)

D 0y(Uj,k,l) 5 Ujk11,l 2 2Uj,k,l 1 Uj,k21,l , (2.4j) 1
Dy2

3!
Gyyy 1

Dz2

3!
HzzzG1 ? ? ? .

D 0z(Uj,k,l) 5 Uj,k,l11 2 2Uj,k,l 1 Uj,k,l21 , (2.4k)
To obtain a fourth-order spatial differencing, they modified
(2.5) with u 5 0 by subtracting out the square bracket termand e.g.,
on the right-hand side of (2.7) and used (2.1) to obtain

D 0y(Fj11,k,l) 5 Fj11,k11,l 2 2Fj11,k,l 1 Fj11,k21,l , (2.4l) Fxxx 5 2Utxx 2 Gyxx 2 Hzxx , (2.8a)

Gyyy 5 2Utyy 2 Fxyy 2 Hzyy , (2.8b)
where Uj,k,l is the discrete approximation of U at ( j Dx,

Hzzz 5 2Utzz 2 Fxzz 2 Gyzz , (2.8c)k Dy, l Dz, n Dt) and u 5 As. In (2.4a,b,c,d), the subscript
( j, k, l) has been dropped from the fluxes F, G, and H to

Utt 5
­

­t
[2Fx 2 Gy 2 Hz]. (2.8d)simplify the notation (i.e., DxF means D x(Fj,k,l). To avoid

complicated super and subscript notation, the standard
numerical analysis notations D x

0 and D x
1 D x

2 used to denote The terms Fxxx , Gyyy and Hzzz need only be approximated
the three-point central difference approximation of (.)x to second-order due to their coefficients Dx2/3!, Dy2/3!, and
and (.)xx are not employed. Dz2/3! (see Eq. (2.7)). Abarbanel and Kumar approximate

The time differencing in (2.4) is the second-order trape- (2.8) at ( j Dx, k Dy, l Dz, n Dt) by
zoidal formula. The extra terms that contribute to the
spatially fourth-order compact scheme are the last term
on the left- and right-hand side of equation (2.4a). Without (Fxxx)j,k,l P

1
Dx2 H2

­

­t
D 0x(Uj,k,l)

these two terms, the implicit scheme is the classical non-
compact second-order central difference scheme, i.e.,

2 D 0x FGj,k11,l 2 Gj,k21,l

2 Dy
1

Hj,k,l11 2 Hj,k,l21

2 Dz GJ,

Un11
j,k,l 1 u[lx D xFn11 1 ly D yGn11 1 lz D zHn11]

(2.5) (2.9a)
5 Un

j,k,l 2 (1 2 u)[lx D xFn 1 ly D yGn 1 lz D zHn].
(Gyyy)j,k,l P

1
Dy2 H2

­

­t
D 0y(Uj,k,l)

Note that in their original paper, Abarbanel and Kumar
allow u 5 1 but their formulation is valid only for u 5 As.

2 D 0y FFj11,k,l 2 Fj21,k,l

2 Dx
1

Hj,k,l11 2 Hj,k,l21

2 Dz GJ,
See Section 2.2 for additional discussion and for a larger
family of implicit schemes for steady-state computations.

(2.9b)
To obtain the spatially fourth-order compact differencing,
Abarbanel and Kumar started with (2.5) with u 5 0 (the

(Hzzz)j,k,l P
1

Dz2 H2
­

­t
D 0z(Uj,k,l)forward Euler time discretization) and three-point central

difference for the convection terms. They then took a
Taylor series expansion about (x, y, z, t) 5 ( j Dx, k 2 D 0z FFj11,k,l 2 Fj21,k,l

2 Dx
1

Gj,k11,l 2 Gj,k21,l

2 Dz GJ,
Dy, l Dz, n Dt) and obtained a modified equation of
the form (2.9c)
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The resulting scheme is then spatially fourth-order. Follow- dissipation for time-marching to steady states than time-
accurate calculations. In addition, (2.11) contributes addeding the idea of Beam and Warming [18] and assuming the

homogeneous property of the Euler equations with computation and might degrade the diagonal dominant
properties of the implicit operator (if first-order upwindDUn

j,k,l 5 Un11
j,k,l 2 Un

j,k,l , one can obtain an ADI delta formu-
lation differencing were used in (2.10) or other relaxation meth-

ods). To overcome the undesirable property of (2.4) for
steady-state applications, we start with the semi-discreteFI 1

1
6

D 0x 1 uDt
­

­x
AnGFI 1

1
6

D 0y 1 uDt
­

­y
BnG form and Taylor series expand the three-point central spa-

tial differencing about ( j Dx, k Dy, l Dz). Instead of (2.8),
the steady part of (2.1) is used to approximate Fxxx , Gyyy ,

3 FI 1
1
6

D 0z 1 uDt
­

­z
CnG DUn

j,k,l (2.10) and Hzzz; i.e., replace (2.8) with

5 2lx(I 1 D0yx) D xF n 2 ly(I 1 D 0xz)D yGn
Fxxx 5 2Gyxx 2 Hzxx , (2.12a)

2 lz(I 1 D 0xy)D zHn. Gyyy 5 2Fxyy 2 Hzyy , (2.12b)

Hzzz 5 2Fxzz 2 Gyzz , (2.12c)One can approximate (­/­x)(A), ­/­y)(B), and ­/­z(C) us-
ing the same three-point central differencing. Due to the

and (2.9) withdelta formulation, for steady-state computations one can
drop the AhD 0x , AhD 0y and AhD 0z terms. See the next section
for a different way of deriving the similar form with a

(Fxxx)j,k,l P 2D 0x FGj,k11,l 2 Gj,k21,l

2 Dy
1

Hj,k,l11 2 Hj,k,l21

2 Dz G@Dx2,wider family of implicit schemes. One can also difference
(­/­x)(A), (­/­y)(B), and (­/­z)(C) by a first-order upwind (2.13a)
differencing, e.g., the first-order conservative or noncon-
servative linearized implicit operator developed by the au- (Gyyy)j,k,l P 2D 0y FFj11,k,l 2 Fj21,k,l

2 Dx
1

Hj,k,l11 2 Hj,k,l21

2 Dz G@Dy2,
thor [33] or the first-order flux vector splitting of Steger
and Warming [34] and van Leer [35]. (2.13b)

2.2. A Modification to the Abarbanel–Kumar Implicit (Hzzz)j,k,l P 2D 0z FFj11,k,l 2 Fj21,k,l

2 Dx
1

Gj,k11,l 2 Gj,k21,l

2 Dz G@Dz2.
Scheme for Steady-State Computations

(2.13c)
The implicit scheme (2.4) or (2.10) can be used for time-

accurate as well as steady-state computations. For time-
Applying a two-parameter family of explicit and implicitaccurate computations, the scheme (u 5 As) is temporally
time discretizations to the resulting semidiscrete form usingsecond order. Observe that the terms
(2.13) yields

Ah[D 0x 1 D 0y 1 D 0z]Uj,k,l (2.11)
Un11

j,k,l 1
u

1 1 g
[lx(I 1 D 0yz)D xFn11 1 ly(I 1 D 0xz)D yGn11

appearing in the explicit side of (2.4a) can be interpreted
as added second-order numerical dissipation to the over all 1 lz(I 1 D 0xy)D z Hn11] 5 Un

j,k,l
scheme. For time-accurate calculations (2.11) might have
some effect on the smearing of shock waves depending on 2

1 2 u

1 1 g
[lx(I 1 D 0yz)D xFn (2.14a)

the procedure in solving the resulting nonlinear systems
of algebraic difference equations. After a steady state is 1 ly(I 1 D 0xz)D yGn 1 lz(I 1 D 0xy)D zHn]
reached, these added second-order numerical dissipations
vanish. This fact becomes more apparent by examining the 1

g
1 1 g

[Un
j,k,l 2 Un21

j,k,l].
delta formulation (2.10). The inherent property of (2.4a)
and (2.10) carries over to the high-resolution modification
to be discussed in Section III. The reason is that, unlike Here 0 # u # 1. The scheme is temporally second-order

if u 5 g 1 As, third-order if g 5 2u 2 Gh and first-orderthe classical way of supplying a linear numerical dissipa-
tion, the design principle of high-resolution shock-captur- otherwise. When u ? 0, the method is implicit. When

g 5 0, it recovers the one-parameter family case. That is,ing methods is constructed to automatically supply the
appropriate dissipation from one grid point to the next. this two-parameter family includes the first-order implicit

Euler (u 5 1, g 5 0), the second-order three-point backwardAny additional terms like (2.11) would further smear the
shock wave. Therefore, (2.4) or (2.10) supply less numerical differentiation (u 5 1, g 5 As), and third-order implicit (u 5
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Ad, g 5 2Ah) methods. Additional higher-order implicit dis- leg version of the backward Euler method since (2.14c)
reduces to (2.14a) for u 5 1 and g 5 0. Again, other highercretizations can be achieved using a three-parameter family

of linear multistep methods. See [36, 37] for the formula. than second-order implicit counterparts of (2.14a),(2.14b)
and the one-leg formulations can also be obtained in aVarious iterative, preconditioning and/or relaxation meth-

ods [38, 39] can be used to solve (2.14a) for steady-state com- similar manner but the resulting scheme might involve
more than three time levels. See Warming and Beam [41]putations. Note that unless S ? 0 in (2.1), one cannot achieve

the compact property for (2.14a) in 1D because the 1D form for a discussion.
Iterative and/or relaxation procedures can be used tocollapses to the standard second-order case.

The analog of (2.10) for the delta formulation of (2.14a) solve (2.14a) and (2.14c). If iterative relaxation procedures
are used to solve (2.14), (2.14c) requires fewer flux evalua-can be readily obtained. For steady-state applications, the

terms Ah(D 0y 1 D 0z), Ah(D 0x 1 D 0z), and Ah(D 0x 1 D 0y) on tions and flux additions than (2.14a) for u ? 0, u ? 1, and
g ? 0. In this case, the linearized Jacobian of the fluxesthe implicit left-hand side can be dropped. For the delta

formulation, it yields at the ‘‘n’’ time-level for Newton-type iterative procedures
can be used.

FI 1
uDt

1 1 g
­

­x
AnGFI 1

uDt
1 1 g

­

­y
BnG 2.3. Compact Explicit Schemes for

Steady-State Computations

One of the easiest procedures for obtaining higher than3 FI 1
uDt

1 1 g
­

­z
CnG DUn

j,k,l
second-order time discretizations for multidimensional
problems is the Runge–Kutta method. There are many

5 2
1

1 1 g
[lx(I 1 D 0yz)D xFn (2.14b) variants of the Runge–Kutta method in the literature. See

[37, 42] for details. The standard fourth-order Runge–
1 ly(I 1 D 0xz)D yGn 1 lz(I 1 D 0xy)D zHn] Kutta takes the form

k1 5 R8(Un)1
g

1 1 g
[Un

j,k,l 2 Un21
j,k,l].

k2 5 R8(Un 1 Dtk1/2)

Again, for steady-state computations, one can difference k3 5 R8(Un 1 Dtk2/2) (2.15a)
(­/­x)(A), (­/­y)(B), and (­/­z)(C) by first-order upwind

k4 5 R8(Un 1 Dtk3)differencing as discussed before.
Although scheme (2.14a) can be used for time-accurate Un11 5 Un 1

Dt
6

[k1 1 2k2 1 2k3 1 k4].computations, the spatial accuracy is no longer fourth-
order. In this case, it appears that (2.14a) has an added

Shu’s third-order Runge–Kutta (Shu [43]) form that isadvantage over the noncompact cousin (2.5). The extra
compatible with TVD, TVB, and ENO schemes takescross derivative terms Ah(D 0y 1 D 0z)D xF, Ah(D 0x 1
the formD 0z)D yG, and Ah(D 0x 1 D 0y)D zH can be viewed as approx-

imations to genuinely multidimensional schemes. See Sec- U(1) 5 Un 1 DtR8(Un)
tion 3.5 for some discussion.

U(2) 5 DfUn 1 AfU(1) 1 Af DtR8(U(1)) (2.15b)Using the one-leg formulation of Dahlquist [40], an alter-
native to (2.14a), (2.14b) is Un11 5 AdUn 1 SdU(2) 1 Sd DtR8(U(2)).

The proper choice of time discretization that is compatibleUn11
j,k,l 5 Un

j,k,l 2 lx(I 1 D 0yz)D xF(Ûj,k,l)
with a chosen spatial discretizations is crucial in achieving

2 ly(I 1 D 0xz)D yG(Ûj,k,l)

(2.14c)
low phase and amplitude errors for time-accurate computa-
tions. This subject is ongoing research. Following the same2 lz(I 1 D 0xy)D zH(Ûj,k,l)
form as (2.14a), a spatially fourth-order compact scheme
can be obtained by defining R8 as (dividing the square1

g
1 1 g

[Un
j,k,l 2 Un21

j,k,l],
bracket of right-hand-side of (2.14a) by Dt and setting
u 5 0 and g 5 0)

with Û 5 (1 2 u)/(1 1 g)Un 1 [u/(1 1 g)]Un11. For u 5 As

and g 5 0, this one-leg formula is the well-known midpoint
R8 5 2

1
Dx

[I 1 D 0yz]D xFn 2
1

Dy
[I 1 D 0xz]D yGn

(2.15c)
implicit method. Note that the noniterative linearized form
(Beam and Warming [18], Yee and Sweby [30]) of the
midpoint implicit formula reduces to the regular nonitera-

2
1

Dz
[I 1 D 0xy]D zHn.

tive linearized trapezoidal formula. Also, there is no one-
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Again, one can use (2.15) for time-accurate computations. High-resolution time-accurate analog of (2.4a). Using
(3.1), the high-resolution time-accurate analog of (2.4a) be-The comments discussed in the paragraph above (2.14c)

of Section 2.2 hold true for (2.15). comes

III. TWO-PARAMETER FAMILIES OF COMPACT Un11
j,k,l 1 uhlx[F̃n11

j11/2,k,l 2 F̃n11
j21/2,k,l]

HIGH-RESOLUTION SHOCK-CAPTURING SCHEMES
1 ly[G̃n11

j,k11/2,l 2 G̃n11
j,k21/2,l]

In the following discussion, wherever there is no confu-
1 lz[H̃n11

j,k,l11/2 2 H̃n11
j,k,l21/2]j 1 D 0xyzUn11

j,k,l 5 Un
j,k,lsion, the terms TVD, TVB, ENO or positive scheme are

loosely used for schemes that are TVD, TVB, ENO or
2 lx[(1 2 u)I 1 D 0yz][F̃n

j11/2,k,l 2 F̃n
j21/2,k,l] (3.2a)positive for (a) the fully discretized form, (b) the semidis-

cretized form, or (c) the frozen constant coefficient case. 2 ly[(1 2 u)I 1 D 0xz][G̃n
j,k11/2,l 2 G̃n

j,k21/2,l]
Note that all TVD, TVB, and ENO schemes are a subclass
of positive schemes and all TVD schemes are a subclass 2 lz[(1 2 u)I 1 D 0xy][H̃n

j,k,l11/2 2 H̃n
j,k,l21/2]

of TVB and ENO schemes. Also when we use the terms
1 D 0xyzUn

j,k,l .TVD, TVB, or ENO, they mean the form has these types
of properties for 1D scalar constant coefficient hyperbolic

In symbolic notationPDEs or nonlinear scalar conservative laws. It is remarked
that regardless of the type of high-resolution method for
1-D, the final scheme for multidimensions is only of the L1 ? Un11 5 R1 ? Un. (3.2b)
positive type of scheme in the sense of [11, 12]. Strictly
speaking, higher than first-order TVD-type schemes exist High-resolution analog of (2.14a) (Time-marching to
only for 1D scalar hyperbolic conservation laws and for steady-state form). For steady-state computations (see Sec-
1D linear hyperbolic systems. tion 2.2), one can drop the last term on the implicit and

A careful examination of (2.4), (2.10), (2.14), or (2.15) explicit sides of (3.2a). A two-parameter family analog of
reveals that spurious oscillations across discontinuities can (2.14a) is
be avoided if one replaces all of the three-point central
differences of the fluxes (2.4b), (2.4c), (2.4d) by one of the
spatially noncompact second-order high-resolution shock- Un11

j,k,l 1
u

1 1 g
hlx(I 1 D 0yz)[F̃n11

j11/2,k,l 2 F̃n11
j21/2,k,l]

capturing TVD, TVB, ENO, or positive-type schemes.
Note that spatially higher than second-order high-resolu-

1 ly(I 1 D 0xz)[G̃n11
j,k11/2,l 2 G̃n11

j,k21/2,l]tion noncompact schemes can also be used but additional
analysis is needed on the over all order of accuracy of 1 lz(I 1 D 0xy)[H̃n11

j,k,l11/2 2 H̃n11
j,k,l21/2]j 5 Un

j,k,l
the final scheme. In other words, redefine (2.4b), (2.4c),
(2.4d) by 2

1 2 u

1 1 g
hlx(I 1 D 0yz)[F̃n

j11/2,k,l 2 F̃n
j21/2,k,l] (3.3a)

1 ly(I 1 D 0xz)[G̃n
j,k11/2,l 2 G̃n

j,k21/2,l]D xF 5 [F̃j11/2,k,l 2 F̃j21/2,k,l], (3.1a)

1 lz(I 1 D 0xy)[H̃n
j,k,l11/2 2 H̃n

j,k,l21/2]jD yG 5 [G̃j,k11/2,l 2 G̃j,k21/2,l], (3.1b)

D zH 5 [H̃j,k,l11/2 2 H̃j,k,l21/2], (3.1c) 1
g

1 1 g
[Un

j,k,l 2 Un21
j,k,l],

where F̃j61/2,k,l, G̃j,k61/2,l, and F̃j,k,l61/2 are the ‘‘good old’’ or in symbolic notation,
noncompact second-order numerical fluxes to be defined
shortly. Most of these numerical fluxes can be viewed
as a spatially three-point central differencing with a
nonlinear numerical dissipation as described in Harten LS ? Un11 5 RS ? Un 1

g
1 1 g

[Un
j,k,l 2 Un21

j,k,l]. (3.3b)
[44, 45], Yee and Harten [46], and Yee [47]. The majority
of these numerical fluxes have a 5-point grid stencil in
each spatial direction. The attractive property of these High-resolution analog of (2.14b), (2.14c), and (2.15).

Similarly, one can obtain the corresponding high-resolu-compact high-resolution shock-capturing schemes is that
fourth-order accuracy can be achieved using the same tion shock-capturing form of (2.14b), (2.14c), and (2.15)

(i.e., with the appropriate numerical fluxes (3.1) insteadgrid stencil and numerical fluxes as their second-order
noncompact cousins. of the three-point central differences of (2.4b)–(2.4d)).
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Denote these high-resolution analogs of (2.14b), (2.14c), Here Rj11/2 is the right eigenvector matrix of ­F/­U using
Roe’s approximate average state and Fj11/2 has severaland (2.15) in symbolic notation respectively as
forms which are now discussed separately.

LD ? DUn11
j,k,l 5 RD ? Un 1

g
1 1 g

[Un
j,k,l 2 Un21

j,k,l], (3.4) Second-order symmetric TVD scheme. The elements of
the vector Fj11/2, denoted by (fl

j11/2)S, for a general second-
order symmetric TVD scheme areUn11

j,k,l 5 Ro ? Û 1
g

1 1 g
[Un

j,k,l 2 Un21
j,k,l], (3.5)

Un11
j,k,l 5 RE ? Un. (3.6) (fl

j11/2)S 5 2c(al
j11/2)[al

j11/2 2 Ql
j11/2]. (3.8a)

Here, LD and RD are the high-resolution analogs of the im-
The value al

j11/2 is the characteristic speed al, where l 5 1,plicit and explicit operators for (2.14b), Ro is the analog of
2, ..., 5, of ­F/­U evaluated at some symmetric average ofthe one-leg operator for (2.14c), and RE is the analog of the
Uj,k,l and Uj11,k,l. The function c is an entropy correctionsymbolic notation for the multistage Runge–Kutta method
to ual

j11/2u. One possible form isfor (2.5). The vector Û in (3.5) is the same as in (2.14c).
Again, for u ? 0, u ? 1, and g ? 0 using iterative

relaxation methods to solve the one-leg high-resolution
c(al

j11/2) 5 5ual
j11/2u, ual

j11/2u $ d1 ,

[(al
j11/2)2 1 d2

1]/2d1 , ual
j11/2u , d1 .

(3.8b)formulation (3.5) requires fewer numerical flux evaluations
and numerical flux additions than (3.3) and (3.4). Extensive
numerical experimentation is needed to determined the
relative convergence rate of (3.3), (3.4), and (3.5) for time- al is the lth jump in the characteristic variable in the x-
marching to the steady state. direction. For problems containing only unsteady shocks,

High-resolution shock-capturing filter. For higher than d1 is usually set to zero. Note that entropy-violating phe-
two stages of Runge–Kutta or predictor–corrector time nomena occur only for steady or nearly steady shocks. For
discretizations, evaluation of (3.1) at every stage is rather steady-state problems containing strong shock waves, a
expensive. To avoid the added operations using (3.1) over proper control of the size of d1 is very important, especially
(2.4a,b,c) one can apply (3.1) at the last stage of the Runge– for hypersonic blunt-body flows. See [48] for a discussion.
Kutta method and the earlier stages using (2.4a,b,c). This The ‘limiter’ function Ql

j11/2, expressed in terms of the
is based on our successful experiences using this shock- jump in the characteristic variables, can be of the form
capturing filter for spatially fourth- and sixth-order
(a) noncompact central differences and (b) predictor– Ql

j11/2 5 minmod(al
j21/2 , al

j11/2)
corrector MacCormack schemes [13]. Excellent shock-

1 minmod(al
j11/2, al

j13/2) 2 al
j11/2 , (3.8c)capturing properties for unsteady computations were ob-

tained. Readers are referred to our forthcoming paper for Ql
j11/2 5 minmod(al

j21/2 , al
j11/2, al

j13/2), (3.8d)
details. An even less expensive filter step was proposed
in [16]. Ql

j11/2 5 minmod[2al
j21/2 , 2al

j11/2, 2al
j13/2, As(al

j21/2 1 al
j13/2)].
(3.8e)

3.1. Choices of Numerical Fluxes for the Fourth-Order
Compact Schemes

The minmod function of a list of arguments is equal to the
smallest number in absolute value if the list of argumentsVariants of the established form of the second- and third-
is of the same sign, or is equal to zero if any arguments areorder noncompact numerical fluxes F̃j11/2,k,l that exhibit
of opposite sign. See the subsection on choice of limiters forhigh-resolution shock-capturing capability have flooded
additional discussion.the literature in the past six years. Most of these later

noncompact numerical fluxes as well as the established Second-order upwind TVD scheme. The elements of the
ones are applicable for the proposed fourth-order compact vector Fj11 denoted by (fl

j11/2)U for a second-order upwind
scheme (3.1)–(3.6). Here, only a few of the established TVD scheme, originally developed by Harten and later
forms of the numerical fluxes are cited. modified and generalized by Yee [47], are

3.1.1. Harten–Yee–Roe–Davis Numerical Fluxes. For
the Harten and Yee upwind TVD-type scheme and Yee– (fl

j11/2)U 5 Asc(al
j11)(gl

j11 1 gl
j) 2 c(al

j11/2 1 cl
j11/2)al

j11/2 ,
Roe–Davis symmetric TVD-type schemes, the numerical (3.9a)
flux using the Roe’s approximate Riemann solver is of the
form [46, 47] cl

j11/2 5 Asc(al
j11)H(gl

j11 2 gl
j)/al

j11/2, al
j11/2 ? 0,

0, al
j11/2 5 0.

(3.9b)F̃j11/2,k,l 5 As[Fj11,k,l 1 Fj,k,l 1 Rj11/2Fj11/2]. (3.7)
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Examples of the commonly used ‘‘limiter’’ function gl
j can the numerical flux of Osher and Chakravarthy [57] or Shu

[43, 56] by using the appropriate flux limiter functions.be expressed as

High-resolution TVD, TVB and ENO Lax–Friedrichs
gl

j 5 minmod(al
j21/2 , al

j11/2), (3.9c) schemes. The corresponding high-resolution TVD Lax–
Friedrichs schemes for system cases can be obtained bygl

j 5 (al
j11/2al

j21/2 1 ual
j11/2al

j21/2u)/(al
j11/2 1 al

j21/2), (3.9d)
defining the c function to be c(al

j11/2) 5 amax
j11/2 for any of

gl
j 5 hal

j21/2[(al
j11/2)2 1 d2] 1 al

j11/2[(al
j21/2)2 the (fl

j11/2)S or (fl
j11/2)U. The value amax

j11/2 can be b(uuj11/2u
1 cj11/2) with 0.5 # b # 1, where u is the velocity in the

1 d2]j/[(al
j11/2)2 1 (al

j21/2)2 1 2d2], (3.9e) x-direction and c is the sound speed. See Shu [43] for
additional formulae. In addition by redefining the c, onegl

j 5 minmod(2al
j21/2 , 2al

j11/2 , As(al
j11/2 1 al

j21/2)), (3.9f)
can obtain a high-resolution TVB Lax–Friedrichs method

gl
j 5 S ? max[0, min(2ual

j11/2u, S ? al
j21/2), by changing the limiter function to be the appropriate form

as discussed above. Although using the Lax–Friedrichsmin(ual
j11/2u, 2S ? al

j21/2)]; S 5 sgn(al
j11/2). (3.9g)

numerical flux would introduce more numerical dissipation
into the scheme, an entropy inequality is automatically

Here d2 is a small parameter to prevent division by zero satisfied with this numerical flux. Thus one does not have
and sgn(al

j11/2) 5 sign(al
j11/2). In practical calculations to deal with an arbitrary parameter d1. In addition, at each

1027 # d2 # 1025 is a commonly used range. For al
j11/2 1 grid point a savings of a (5 3 5) matrix–vector multiplica-

al
j21/2 5 0, gl

j is set to zero in (3.9d). tion is realized in each direction.
Choice of limiter functions. Later development in limit-

High-Resolution ENO and positive schemes. If ENO
ers has flooded the literature and has created much debate.

(Harten and Osher [58]) and positive schemes other than
Most of the improvements are usually problem dependent.

the Lax–Friedrichs numerical flux discussed in the previous
See [49–52] on the error propagation for nonlinear approx-

paragraph are desired, one can define the appropriate nu-
imations to hyperbolic equations containing discontinuities

merical flux according to the references cited earlier.
in derivatives or discontinuous solutions. For the last six
years of development in flux limiters, see articles which 3.1.2. The MUSCL Approach
have appeared in the Journal of Computational Physics

MUSCL approach using an approximate Riemannand related CFD Journals and conference proceedings.
solver. The numerical flux function F̃j11/2,k,l for an upwindFor high gradient and/or high frequency wave propagation
MUSCL-type scheme as described in Yee [59,13] usingwith shock waves and aeroacoustics applications, suitable
the local-characteristic approach can be expressed aslimiters, and the proper amount of limiting are essential

to the overall accuracy of flow computations in addition
to the comments above Section III. See Davis [6] for a F̃j11/2,k,l 5 As[F(UR

j11/2) 1 F(UL
j11/2) 1 R8j11/2F8j11/2]. (3.11a)

possible limiter for this type of flow. The artificial compres-
sion method of Harten [10] can also be used to steepen

The elements of F8j11/2 and the vector (a8)j11/2 are given bythe clipping effect due to standard TVD schemes. See Yee
and Kutler [53] and Yee et al. [54] for examples. Extensive

(f8)l
j11/2 5 2c((a8)l

j11/2)(a8)l
j11/2 , (3.11b)numerical experimentation is needed to determine the per-

formance of these schemes and limiter combinations. (a8)j11/2 5 (R8)21
j11/2(UR

j11/2 2 UL
j11/2), (3.11c)

Shu [55, 56] showed procedures for modifying some ex-
isting TVD schemes such that the resulting schemes could

where c((a8)l
j11/2) can be u(a8)l

j11/2uor the same form asbe proven to be TVB and of globally higher-order accuracy
(3.8b). Here (a8)l

j11/2 are the eigenvalues and R8j11/2 is thein space, including extrema points. For example, by replac-
eigenvector matrix of ­F/­U evaluated using a symmetricing the gl

j function by gM
j as discussed in Shu, the modified

average between UR
j11/2 and UL

j11/2; i.e.,flux schemes can be made uniformly second-order accurate
even at points of extrema. One of the forms suggested by

(a8)l
j11/2 5 al(UR

j11/2 , UL
j11/2), (3.11d)Shu is

R8j11/2 5 R(UR
j11/2 , UL

j11/2). (3.11e)
gM

j 5 As minmod(al
j11/2 , gaj21/2 1 M Dx2 sgn(al

j11/2))
(3.10)

1 As minmod(al
j21/2 , gal

j11/2 1 M Dx2 sgn(al
j21/2)). However, there are options in applying the limiters for

system cases. Namely, one can impose limiters on the con-
servative, primitive, or characteristic variables.Here 1 # g # 3 and M $ 0. Shu suggests setting M 5 50

for the Burgers’ equation computations. One can also use Various ‘‘slope’’ limiters can be used to eliminate un-
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wanted oscillations. A popular one is the ‘‘minmod’’ lim- MUSCL approach using the Lax–Friedrichs numerical
flux. The numerical flux function F̃j11/2,k,l for a MUSCL-iter; it modifies the upwind-biased interpolation as
type approach using the Lax–Friedrichs numerical flux can
be expressed as

UR
j11/2 5 Uj11,k,l 2 Af[(1 2 h)Dj13/2̃ 1 (1 1 h)Dj11/2̃̃], (3.12a)

F̃j11/2,k,l 5 As[F(UR
j11/2) 1 F(UL

j11/2) 1 F8j11/2], (3.14a)

UL
j11/2 5 Uj,k,l 1 Af[(1 2 h)Dj21/2̃̃ 1 (1 1 h)Dj11/2̃], (3.12b)

where F8j11/2 is

Dj11/2̃ 5 minmod(Dj11/2 , gDj21/2), (3.12c) F8j11/2 5 2(a8)max
j11/2(UR

j11/2 2 UL
j21/2), (3.14b)

and (a8)max
j11/2 can be

Dj11/2̃̃ 5 minmod(Dj11/2 , gDj13/2), (3.12d)

(a8)max
j11/2 5 b(uu8j11/2u 1 c8j11/2); 0.5 # b # 1. (3.14c)where

There is a tremendous savings in operation count (espe-
Dj11/2 5 Uj11,k,l 2 Uj,k,l (3.12e)

cially for multidimensional problems and/or nonequilib-
minmod(p, gq) 5 sgn(p) ? maxh0, min[upu, gq sgn(p)]j (3.12f) rium flows) inusing the MUSCL–Lax–Friedrichs numerical

flux instead of the Roe-type first-order upwind numerical
flux when the limiter function is applied to the conservativewith p 5 Dj11/2 and q 5 Dj21/2 in Eq. (3.12c). Here the spatial
or primitive variables instead of the characteristic variables.order of accuracy (before the application of limiters) is
Note that one does not have a similar savings using the Lax–determined by the value of h,
Friedrichs numerical flux for the non-MUSCL formula-
tions. In problems containing contact discontinuities as wellh 5 21, fully upwind scheme,
as shocks, one can use a more compressive limiter for the

h 5 0, Fromm scheme, density and a less compressive limiter for the other vari-
ables. To compensate for the slightly more diffusive natureh 5 1/3, third-order upwind-biased scheme,
of these higher-order Lax–Friedrichs schemes, the artificial

h 5 1, three-point central-difference scheme, compression method of Harten [10] can be used. See Yee
and Kutler [53] for an implementation and example.

and 1 # g # (3 2 h)/(1 2 h) with h ? 1.
One can improve the global order of accuracy (TVB) MUSCL approach using flux–vector splittings. The nu-

of the MUSCL scheme (3.11) by modifying UR
j11/2 and merical flux F̃j11/2,k,l for either flux–vector splitting can be

UL
j11/2 in Eq. (3.12) by expressed as

F̃j11/2,k,l 5 F1(UL
j11/2) 1 F2(UR

j11/2), (3.15)
UR

j11/2 5 Uj11,k,l 2 Af[(1 2 h)Dj13/2̃

M

1 (1 1 h)Dj11/2̃̃

M

], (3.13a)
where F6(UL,R

j11/2 are evaluated using either the generalized
Steger–Warming splitting, or the generalized van Leer

UL
j11/2 5 Uj,k,l 1 Af[(1 2 h)Dj21/2̃̃

M

1 (1 1 h)Dj11/2̃

M

], (3.13b) splitting. The vectors UR
j11/2 and UL

j11/2 are the same as in
equation (3.12). See Yee [13] and references cited therein.

Dj11/2̃

M

5 minmod(Dj11/2 , gDj21/2 1 M Dx2 sgn(Dj11/2)), (3.13c)
3.2. Compact High-Resolution Schemes for Problems

Containing Source Terms
Dj11/2̃̃

M

5 minmod(Dj11/2 , gDj13/2 1 M Dx2 sgn(Dj11/2)), (3.13d) When S in (2.1) is not zero and S is a function of U, x,
y, and z, if one uses a pointwise evaluation of S(U, x, y, z),

where i.e., S(U, x, y, z) P S(Uj,k,l, j Dx, k Dy, l Dz), (2.7) becomes

minmod(p, q) 5 sgn(p) ? maxh0, min[upu, q sgn(p)]j, Ut 1 Fx 1 Gy 1 Hz 2 S
(3.13e)

5 2 FDt
2

Utt 1
Dx2

3!
Fxxx 1

Dy2

3!
Gyyy 1

Dz2

3!
HzzzG1 ? ? ? ,

with p 5 Dj11/2 and q 5 gDj21/2 1 M Dx2 sgn(Dj11/2) in
Eq. (3.13c). (3.16)
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and (2.8) becomes taining the same order of accuracy is quite involved and
computationally expensive (Abarbanel [60]). For convec-
tion dominating viscous flows where the accuracy of theFxxx 5 Sxx 2 Utxx 2 Gyxx 2 Hzxx (3.17a)
convection terms is more important, the easiest method for

Gyyy 5 Syy 2 Utyy 2 Fxyy 2 Hzyy (3.17b) discretizing the viscous terms is the standard noncompact
second- or fourth-order central differencing. Another al-Hzzz 5 Szz 2 Utzz 2 Fxzz 2 Gyzz (3.17c)
ternative is to use the standard compact fourth-order
method. Applying this to ­2V/­x2 yieldsUtt 5

­

­t
[S 2 Fx 2 Gy 2 Hz]. (3.17d)

For the semidiscrete formulation for steady-state computa- ­2V
­x2 P

1
Dx2 (C21DV)j , (3.21a)

tions, one drops all the terms containing the t-derivatives.
Thus the analogy for (3.2), (3.3), and (3.5) for problems

where the C and D operators are defined bycontaining source terms, respectively, are

L1 ? Un11 2 u DtSn11
j,k,l 5 R1 ? Un

(CV)j 5 aQsVj11 1 GhVj 1 aQsVj21 , (3.21b)

1 Dt[(1 2 u)I 1 D 0xyz]Sn
j,k,l , (3.18) (DV)j 5 Vj11 2 2Vj 1 Vj21 . (3.21c)

LS ? Un11 2
u Dt

1 1 g
D 0xyzSn11

j,k,l 5 RS ? Un 1
g

1 1 g
[Un

j,k.l 2 Un21
j,k,l] The final scheme using either the noncompact second- or

fourth-order central differencing or (3.21) for the viscous
1

1 2 u

1 1 g
DtD 0xyzSn

j,k,l , (3.19) terms is no longer fourth order. How this inconsistent way
of discretizing the viscous terms affects the overall perfor-
mance and accuracy of the convection dominating flowsUn11

j,k,l 5 Ro ? Û 1
g

1 1 g
[Un

j,k,l 2 Un21
j,k,l]

remain to be addressed.

1
1 2 u

1 1 g
DtD 0xyzŜj,k,l . (3.20)

3.5. Approximation to Multidimensional Schemes

The extra cross derivative terms Ah(D 0y 1 D 0z)D xF,The analogy for the delta formulation (3.4) and (3.6) can
Ah(D 0x 1 D 0z)D yG, and Ah(D 0x 1 D 0y)D zH appearing inbe obtained in a similar manner.
all of the above fourth-order compact schemes using (2.4)From the studies in [25, 27–29], pointwise evaluation
or (3.1) for the D xF, D yG, and D zH can be viewed asmight not be the optimal discretization for the source terms
approximations to genuinely multidimensional schemes in(in terms of stability and accuracy), depending on the
the sense that multidimensional flux differences are in-method of discretizing the convection term. Readers are
volved. These forms can be interpreted as poor man’sreferred to these references for additional discussion.
multidimensional shock-capturing schemes for structured
grids without the complicated formulation as in Roe [61]3.3. TVD Property for the scalar 1-D case
and related work. In particular, these cross derivative terms

For 1D, all the compact forms collapse to the standard involve four extra vector additions for 2D and 8 for 3D in
second-order noncompact case unless S ? 0 in (2.1a). For each spatial direction over their second-order noncompact
(3.2), the 1D version has two extra terms (AhD 0x(un11

j ) and cousins. Since one computes the entire flux field before
AhD 0x(un

j )) over the standard second-order noncompact summing the flux differences, no added flux evaluations
case. For the proof that (3.22) has the TVD or TVB prop- are needed. For example, the F flux differencing for
erty, see the original NASA TM (Yee [21]) for a discussion. 2D now involves Fj61/2,k61 and Fj61/2,k for 2D, and
For u 5 1, the implicit method is unconditionally TVD Fj61/2,k61,l, Fj61/2,k,l61, and Fj61/2,k,l for 3D. The partial
and for u 5 As, the scheme is TVD if the CFL like condition involvement of the multidimensional nature of the fluxes
is #Fd. The positive scheme definition for multidimensional are apparent. For the TVD type of schemes, the grid mole-
systems can be found in Liu and Lax [12]. For the proof cule of the fluxes are 5 3 3 point in 2D and 5 3 3 3 3 in
of whether a higher than first-order scheme in multidimen- 3D as opposed to a five-point 1D line for the second-
sions satisfies the the positivity property, see Einfeldt [11] order noncompact case. Consequently, these terms would
and Liu and Lax [12]. produce less distortion in spherical type shocks and are

more accurate in vortex type flows than schemes based
3.4. Convection Dominating Viscous Flows

purely on 1D extensions. Of course, the degree of distor-
tion also depends on the grid, the form of the numericalFormal extension of these high-resolution shock-captur-

ing compact schemes to include viscous terms while main- flux, and the flux limiters as well.
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3.6. Spatially Sixth-Order Compact Schemes In other words, the flux differences for F now involve

To obtain a spatially sixth-order compact scheme, three
( j 6 As, k 6 2, l), ( j 6 As, k 6 1, l),additional terms involving Fxxxxx, Gyyyyy, and Hzzzzz need

to be retained in (2.7). They have the form ( j 6 As, k, l), ( j 6 As, k, l 6 2), (3.25)

( j 6 As, k, l 6 1).

2 FDx4

5!
Fxxxxx 1

Dy4

5!
Gyyyyy 1

Dz4

5!
Hzzzzz.G (3.22)

Consequently, instead of requiring an extra four vector
additions for 2D and eight for 3D in each spatial direction
over their second-order noncompact cousins for the fourth-

In other words we have to subtract (3.22) from the fourth- order compact case, the number of extra vector additions
order schemes to achieve the sixth-order formulation. A for the sixth-order case is doubled. The extra vector addi-
crucial step to retain a narrow grid stencil for the sixth- tions are 8 for 2D and 16 for 3D in each spatial direction.
order case is to approximate, e.g., For example, the F flux differencing for 2D now involves

Fj61/2,k12, Fj61/2,k22, Fj61/2,k11 and Fj61/2,k21. The beauty of
the sixth-order scheme is the extreme compact nature of(Fxxxxx)j,k,l

(3.23) the stencil and the full involvement of the multidimen-
sional nature of the fluxes. For the TVD type of schemes,P

1
Dx2 [(Fxxx)j11,k,l 2 2(Fxxx)j,k,l 1 (Fxxx)j21,k,l].

the grid molecule of the fluxes is the full 5 3 5 point square
in 2D and 5 3 5 3 5 point cubic in 3D. Note that the grid
molecule of their second-order noncompact cousins is aMaking use of the identity (2.8) for each of the ( j 6 1,
five-point line.k, l) indices for Fxxx in (3.23), we have

Extension of the Abarbanel and Kumar compact scheme
to sixth-order. Using the above formula, one can obtain a

(Fxxxxx)j,k,l P 2
1

Dx4 HF­

­t
D 0x(Uj11,k,l) sixth-order variant of the Abarbanel and Kumar scheme

by replacing (3.1) with (2.4b), (2.4c), (2.4d). However, the
grid molecule now becomes 3 3 5 in 2D and 3 3 5 3 5

1 D 0x SGj11,k11/2,l 2 Gj11,k21/2,l

Dy in 3D. The compact nature is less pronounced than the
high-resolution compact case since a grid molecule of
3 3 3 in 2D and 3 3 3 3 3 in 3D cannot be maintained.

1
Hj11,k,l11/2 2 Hj11,k,l21/2

Dz DG In addition, the multidimensional nature of this form is
somewhat inconsistent. The flux differences put more
weight on the nondominating directions (e.g., the y and z2 2 F ­

­t
D 0x(Uj,k,l) 1 D 0x SGj,k11/2,l 2 Gjk21/2,l

Dy directions for the F flux), instead of the dominating direc-
tion (e.g., the x direction for the F flux).

1
Hj,k,l11/2 2 Hj,k,l21/2

Dz DG1 F­

­t
D 0x(Uj21,k,l)

IV. COMPACT HIGH-RESOLUTION SHOCK-
CAPTURING SCHEMES BASED ON TOTAL

1 D 0x SGj21,k11/2,l 2 Gj21,k21/2,l

Dy VARIATION DIMINISHING IN THE MEAN (TVDM)

Cockburn and Shu [9] proposed an explicit compact
1

Hj21,k,l11/2 2 Hj21,k,l21/2

Dz DGJ, shock-capturing scheme based on the splitting of a Lax–(3.24)
Friedrichs flux and the idea of a total variation diminishing
in the mean (TVDM). Here, we extend their idea to a
family of explicit and implicit schemes with numericalwhere D 0x is the same as (2.4i). Similarly, the Gyyyyy and

Hzzzzz can be approximated in the same manner. By exam- fluxes similar to Section III, but using the TVDM idea.
That is, the flux limiters are performed on a mean valueining the final sixth-order scheme (by subtracting (3.22) in

(3.2)–(3.6)), one readily realizes that the width of the grid of U involving a symmetric linear combination of adjacent
grid points. However, even for scalar hyperbolic conserva-stencil for each spatial direction remains the same as the

second-order noncompact scheme. The added terms in- tion laws, their TVDM idea does not completely suppress
spurious oscillations across discontinuities due to the lim-volves an increase in the width of the grid stencil, e.g., in

the y and z directions rather than the x direction for the iting of the local mean step. See their original paper for
illustrations. The present straightforward extension of theirF flux.



228 H. C. YEE

TVDM idea suffers a similar shortcoming. By applying Un11
j,k,l 1 u[lx(A21

x BxF)n11
j,k,l 1 ly(A21

y ByG)n11
j,k,l

part of their idea and performing flux limiters not on the
1 lz(A21

z BzH)n11
j,k,l] 5 Un

j,k,l 2 (1 2 u)[lx(A21
x BxF)n

j,k,llocal mean value of U but on U itself, a tremendous im-
provement in the shock resolution is realized. Another 1 ly(A21

y ByG)n
j,k,l 1 lz(A21

z BzH)n
j,k,l]. (4.3)

alternative in achieving the desired shock resolution is to
evaluate the entire numerical flux function on the local

Letmean value of U. The reason for presenting the schemes
in 3D is to contrast these schemes with the ones proposed

Uj,k,l 5 (AzAyAxU)j,k,l . (4.4)in Section III. Although the operation count for both fami-
lies of methods are very close for problems that are lower
than 3D, for 3D the TVDM version requires a larger opera- Since Ax, Ay, and Az commute, we can multiply the semi-
tion count than the Abarbanel and Kumar extension. One discretized form of (4.3) by Ax Ay Az and (4.3) becomes
advantage of the TVDM version is that a spatially and
temporally fourth-order compact form for both time-accu-

Un11
j,k,l 1 u[lx(AzAyBxF)n11

j,k,l 1 ly(AzAxByG)n11
j,k,lrate and time-marching approaches can be readily obtained

as opposed to the inability to extend the Abarbanel and 1 lz(AxAyBzH)n11
j,k,l] 5 Un

j,k,l 2 (1 2 u)[lx(AzAyBxF)n
j,k,l

Kumar modification in a similar manner for time-accurate
1 ly(AzAxByG)n

j,k,l 1 lz(AxAyBzH)n
j,k,l]. (4.5a)computations.

Assume the Fx, Gy, and Hz in (2.1) are approximated
by some compact operator at ( j Dx, k Dy, l Dz), A two-parameter family of explicit and implicit counter-

parts of (4.5a) takes the form

Fx P
1

Dx
(A21

x BxF)j,k,l , (4.1a)

Un11
j,k,l 1

u

1 1 g
[lx(AzAyBxF)n11

j,k,l 1 ly(AzAxByG)n11
j,k,l

Gy P
1

Dy
(A21

y ByG)j,k,l , (4.1b)

1 lz(AxAyBzH)n11
j,k,l] 5 Un

j,k,l 2
1 2 u

1 1 g
[lx(AzAyBxF)n

j,k,l

Hz P
1

Dz
(A21

z BzH)j,k,l , (4.1c)
1 ly(AzAxByG)n

j,k,l 1 lz(AxAyBzH)n
j,k,l]

1
g

1 1 g
[Un

j,k,l 2 Un21
j,k,l]. (4.5b)where for a fourth-order approximation,

(AxF)j,k,l 5 Ah(Fj11,k,l 1 4Fj,k,l 1 Fj21,k,l), (4.2a)
The one-leg formulation of Dahlquist for this case has
the form(AyG)j,k,l 5 Ah(Gj,k11,l 1 4Gj,k,l 1 Gj,,k21,l), (4.2b)

(AzH)j,k,l 5 Ah(Hj,k,l11 1 4Hj,k,l 1 Hj,k,l21), (4.2c)
Un11

j,k,l 5 Un
j,k,l 2 lx(AzAyBxF)`

j,k,l 2 ly(AzAxByG)`
j,k,l

(4.5c)(BxF)j,k,l 5 As(Fj11,k,l 2 Fj21,k,l), (4.2d)

2 lz(AxAyBzH)`
j,k,l 1

g
1 1 g

[Un
j,k,l 2 Un21

j,k,l].(ByG)j,k,l 5 As(Gj,k11,l 2 Gj,k21,l), (4.2e)

(BzH)j,k,l 5 As(Hj,k,l11 2 Hj,k,l21). (4.2f)
The symbol (`) here means the flux evaluations on the
right-hand side of (4.5c) are evaluated using one of threeSimilarly, one can define the corresponding third-order
ways: (1) evaluated at Û 5 (1 2 u)/(1 1 g)Un 1and sixth-order compact operators. Since one does not
u/(1 1 g)Un11, (2) evaluated partly at Û and partly atgain in operation count for third-order compact schemes
ÛÛ 5 (1 2 u)/(1 1 g)Un 1 u/(1 1 g)Un11, and (3) evaluatedover the noncompact cousins these forms are not discussed
at ÛÛ. More details on the various options will be discussedhere. In Section 4.2, an approximate sixth-order compact
shortly. The advantage of (4.5c) over (4.5b), where iterativescheme will be discussed.
relaxation methods are used to solve the nonlinear alge-
braic equations as discussed in Sections II and III, carry

4.1. Two-Parameter Families of Explicit and Implicit
over to the present formulation, especially for the 3D case.

Compact Schemes
Again, higher than second-order implicit counterparts of
(4.5b), (4.5c) can also be obtained in a similar manner butA one-parameter family of explicit and implicit compact

schemes suitable for both time-accurate and time-marching the resulting scheme involves more than three time levels.
For (4.5) (or (4.4)) to have a high-resolution shock-approaches for (2.1) with S 5 0 can be written
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capturing property, instead of using (4.2), the following extension of Cockburn and Shu’s idea. In this case, we
define F .

j11/2,k,l, G.
j,k11/2,l, and H .

j,k,l11/2 to have the sameis proposed:
form as (3.7)–(3.15) except e.g., all the Rj11/2 and Fj11/2

are evaluated at Uj21,k,l, Uj,k,l, Uj11,k,l , and Uj12,k,l. That(BxF)j,k,l 5 F .
j11/2,k,l 2 F .

j21/2,k,l (4.6a)
is, e.g.,

(ByG)j,k,l 5 G.
j,k11/2,l 2 G.

j,k21/2,l (4.6b)

F .
j11/2,k,l 5 As[Fj11,k,l 1 Fj,k,l 1 Rj11/2Fj11/2], (4.8)(BzH)j,k,l 5 H .

j,k,l11/2 2 H .
j,k,l21/2 . (4.6c)

where Rj11/2 and Fj11/2 are the same as in Section III butWithout lost of generality, it is assumed that U means Û
are evaluated at U. For the corresponding MUSCL andfor (4.5c) for the following three options of evaluating
flux vector splittings of (3.1), all the limiting is applied to(4.6). In particular, when we say that the flux is evaluated
U.at U 5 (AzAyAxU)j,k,l, we actually mean that the flux is

Preliminary numerical experiments performed by Dr.evaluated at (AzAyAxÛÛ)j,k,l for (4.5c).
George Huang of NASA Ames on the 1D scalar Burgers

Option I. To achieve fourth-order spatial differencing, equation revealed that the straightforward extension of
the first option is to evaluate F .

j11/2,k,l, G.
j,k11/2,l, and Cockburn and Shu’s idea to the numerical fluxes proposed

H.
j,k,l11/2 in exactly the same form and arguments as the in Section III suffers a shortcoming similar to that of their

F̃j11/2,k,l, G̃j,k11/2,l, and H̃j,k,l1/2 in (3.7)–(3.15). This is the original numerical flux. This TVDM idea does not com-
author’s first proposed compact form to replace Cockburn pletely suppress spurious oscillations across discontinu-
and Shu’s compact form. The terms in the round brackets ities. However, numerical experiments on option I indicate
on both sides of (4.5) are, e.g., that spurious oscillations are minimized and a tremendous

improvement in the shock resolution is realized.

(AzAyBxF)j,k,l 5 AhAz[(F .
j11/2,k11,l 1 4F .

j11/2,k,l 1 F .
j11/2,k21,l) Option III. The third option is to evaluate all of the

terms in the round brackets on the implicit and explicit
2 (F .

j21/2,k11,l 1 4F .
j21/2,k,l 1 F .

j21/2,k21,l)] operators in (4.5) at U. That is, e.g.,
5 etc. (4.7)

F .
j11/2,k,l 5 As[Fj11,k,l 1 Fj,k,l 1 Rj11/2Fj11/2], (4.9)

For option I, F .
j61/2,k61,l 5 F̃j61/2,k61,l and F .

j61/2,k,l 5 F̃j61/2,k,l

as in (3.7)–(3.15). where Fj11,k,l, Fj,k,l, Rj11/2, and Fj11/2 are the same as in Sec-
Expanding out the right-hand side of (4.7), one gets 18 tion III but are evaluated at U. For the corresponding

terms of the numerical flux evaluations in 3D (in each MUSCL and flux-vector splitting of (3.1), all the dependent
direction) as opposed to six terms in 2D (in each direction) variables and limiting are applied to U. Although the third
and two terms in 1D for each of the operators like (4.7) option alters the original compact property of the scheme,
in Eq. (4.5). Comparing the operation count with the Abar- preliminary numerical experiments show that shock resolu-
banel and Kumar extension, the TVDM version requires tion is similar or slightly better than option I and far better
a lot more vector additions for the 3D case. In other words, than option II. In addition, the standard matrix inversion
the vector additions for the Abarbanel and Kumar exten- associated with the standard compact scheme is not re-
sion increase linearly from 2D to 3D but not for the TVDM quired for option III. In fact, the operation count for option
version. However, the variants of the fourth-order Runge– III is comparable to the high-resolution case discussed in
Kutta method of Cockburn and Shu are readily obtained section III for 2D, but requires more operations for 3D
for both time-accurate and time-marching approaches as computations. Note that Option III collapses to the non-
opposed to the inability to extend the Abarbanel and Ku- compact case for 1D unless S ? 0 in (2.1a). Although the
mar extensions in a similar manner for a spatially and exact spatial order of accuracy using option III needs
temporally fourth-order scheme for time-accurate compu- further investigation, one apparent advantage of option
tations. III over their standard noncompact cousins is that this

The multidimensional nature of these schemes and the scheme can be viewed as an approximation to genuinely
molecule of the grid stencil are similar as discussed in multidimensional schemes as discussed in Sections II
Section 3.5. This explicit scheme will be discussed in the and III.
next subsection. The viscous analog of (4.5) using the Similar to Sections II and III, one can obtain the corre-
fourth-order form (3.21) is straightforward. However, the sponding ADI delta form for (4.5). For steady-state compu-
viscous part is rather expensive to compute. The discussion tations, one can use the same simplified first-order spatial
above applies to options II and III as well. differencing for the implicit operator (implicit left-hand

side) as discussed previously.Option II. The second option is the straightforward
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Temporally higher-order explicit TVDM compact can readily obtain either the positive or the TVDM prop-
erty for (4.11) for the three options of evaluating (Bx f )j.schemes. Unlike the explicit higher-order compact schemes

discussed in Section III, the schemes discussed here can
4.2. A Spatially Sixth-Order Extensionretain fourth-order spatial and time accuracy for time-

accurate and time-marching computations. The explicit The standard sixth-order compact approximation takes
scheme is the same as (2.15) except the three options in the form
evaluating (4.6) should be applied to the proper arguments
of each stage of the Runge–Kutta method for high-resolu-

(AxF)j,k,l 5 Ag[Fj11,k,l 1 3Fj,k,l 1 Fj21,k,l] (4.14a)tion shock-capturing capability. The R8 counterpart of
(2.15c) is (BxF)j,k,l 5 hQ;[Fj12,k,l 2 Fj22,k,l] 1 ShK;[Fj11,k,l 2 Fj21,k,l]

5 (B1
xF)j,k,l 1 (B2

xF)j,k,l (4.14b)
R8 5 2

1
Dx

(AyAzBxF)n
j,k,l 2

1
Dy

(AxAzByG)n
j,k,l

(4.10) with

2
1

Dz
(AxAyBzH)n

j,k,l .
(B1

xF)j,k,l 5 hQ;[Fj12,k,l 2 Fj22,k,l] (4.14c)

(B2
xF)j,k,l 5 ShK;[Fj11,k,l 2 Fj21,k,l]. (4.14d)Alternatively, to save CPU, one can apply (A.6) at the

last stage of the Runge–Kutta method and (4.2d,e,f) for
An approximation to modify (4.14) to have high-resolutionthe earlier stages of the Runge–Kutta procedure. To sup-
shock-capturing property is to keep (4.14c) but replacepress the oscillations across discontinuities due to the
(4.14d) byTVDM step, one can apply the filter step on Un11/2 where

Un11/2 is the solution of Un11/2 5 A21
z A21

y A21
x Un11 using the

(B2
xF)j,k,l 5 ShK;[F .

j11/2,k,l 2 F .
j21/2,k,l] (4.15)Runge–Kutta method. In this case, one can avoid the three

options in applying the flux limiters.
with the rest of the formulation as discussed above. ByViscous flows. Formal extension of the TVDM-type
using (4.15), the sixth-order grid stencil is the same as thecompact schemes to include simple viscous terms is
fourth-order high-resolution compact counterparts. Thestraightforward using the fourth-order compact operator
multidimensional nature of this scheme using the U formu-such as (3.21). However, the grid stencil for the inclusion
lation is as discussed previously. Alternatively one can useof viscous terms is rather expensive to compute due to the
(4.14d) instead of (4.15) but add a high-resolution filter asmultiplication factor of the discretized viscous terms by
the final step to obtain the solution for the next time level.the AxAyAz operator.

TVDM Property of (4.5) for 1D scalar case. In 1D with V. CONCLUDING REMARKS
uj 5 (Axu)j, (4.5) becomes

Two families of explicit and implicit compact high-reso-
un11

j 1 lu(Bx f )n11
j 5 un

j 2 l(1 2 u)(Bx f )n
j . (4.11) lution shock-capturing methods for the multidimensional

compressible Euler equations have been formulated. Some
of these schemes can be spatially fourth- and sixth-orderCockburn and Shu define the total variation of the mean
accurate away from discontinuities. The attractive propertyu by
of these compact high-resolution shock-capturing schemes
is that fourth- or sixth-order accuracy can be achieved

TV(un) 5 Oy
j52y

uun
j11 2 un

j u. (4.12) using the same grid stencil width (5–7 points in each spa-
tial direction) and numerical fluxes as their second-order
noncompact cousins. In contrast, typical grid stencils for

The explicit scheme that Cockburn and Shu considered is noncompact fourth-order high-resolution shock-capturing
for u 5 0 using the Lax–Friedrichs flux splitting. They schemes require 9–11 points in each spatial direction.
showed that their explicit scheme satisfies the TVDM suf- Many variations of these two families of schemes are
ficient condition, i.e., proposed. The majority of the modified Abarbanel and

Kumar schemes are best suited for time-marching to the
TV(un11) # TV(un), (4.13) steady state. Although they can be used for time-accurate

computations, the time accuracy can be at most second
order in order. Two modifications to the TVDM idea pro-under the CFL condition of As.

Using the same argument as in Section 3.3 of [21] one posed by Cockburn and Shu to improve shock resolution
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are discussed. They can be used for both time-marching sion due to the compact formula), the requirement of a
special numerical boundary treatment, applicability to andand time-accurate computations. These modifications to

the scheme of Cockburn and Shu result in far better shock accuracy for time-accurate calculations, and ease of imple-
mentation to include source terms. From the discussion inresolution than their original form. In 2D, the operation

count for both families is comparable, whereas the 3D previous sections, one can conclude that for all but the
fourth-order time-accurate capability issue, the AbarbanelTVDM version is more expensive to compute at each step

than the Abarbanel and Kumar extension. However, a and Kumar extension appears to be more efficient than
the TVDM version.spatially and temporally fourth-order compact variant of

the Cockburn and Shu scheme is readily obtained for both The majority of these implicit schemes are especially
suited for time-marching approaches to steady-state nu-time-accurate and time-marching approaches as opposed

to the inability to extend the Abarbanel and Kumar modi- merical solutions, since higher-order spatial accuracy can
be achieved with minimal effort and the steady states arefication in a similar manner for time-accurate computa-

tions. independent of the time step. The proper choice of time
discretizations for the proposed two families of schemesThe one-leg formulation of these two families of implicit

compact schemes is also proposed. If iterative relaxation for wave propagation, and computational aeroacoustics
type of applications has not been addressed. Thus, themethods are used, the one-leg forms (for both families) are

less expensive to compute than their non-one-leg cousins. time discretizations discussed in this paper might not be
optimized for the particular types of flows in the sense ofHigh-resolution shock-capturing properties of these fami-

lies of compact forms can also be achieved via a variant wave resolution and phase error discussed in Tam and
Webb, Lele, Ma, & Fu, Davis, and the 1995 Workshop onof the higher-order Lax Friedrichs numerical flux. Compa-

rable operations count to their classical shock-capturing Aeroacoustics. This topic is ongoing research. Future study
will include practical application of these families of meth-counterparts can be achieved without the use of Riemann

solvers for coupled nonlinear systems. Thus this makes ods to a variety of flow physics.
high-order high-resolution compact shock-capturing
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